
Radial Amplitude of $\delta n(r)$ (and $\delta E(r)$) Induced by HHFW With Reflectometry - S. Kubota, et al.

- Use reflectometers to resolve the electric field structure of HHFW in the ST. Comparison with model/code results for propagation and absorption.
 - Better understanding of physics of propagation and absorption in the ST.
 - Interaction between RF wave, instabilities in the core and edge.
- δ n associated with RF waves have been measured in the past using reflectometry: (modulation of cutoff layer -> phase modulation problem).
 - DIII-D (Lee et al.), scannable fixed-frequency heterodyne (amplitude profile radially scanned, shot-to-shot).
 - NSTX (Wilgen et al.), FMCW (RF waves and parametric decay instability at edge near antenna). Absolute level of δ n?
 - TST-2 (Ejiri et al.), fixed-frequency quadrature and FMCW (amplitude radial profile during a single shot). Used this method on NSTX.
- For NSTX, goal is to measure the radial profile of δ n associated with the HHFW and associated instabilities at Bay J location:
 - Use both FMCW (13-53 GHz) and heterodyne reflectometer (42 GHz).
 - Modifications to FMCW system completed at end of 2008.
 - Extensive noise check and PoP completed in 2009.

2009 Measurements

Preliminary results:

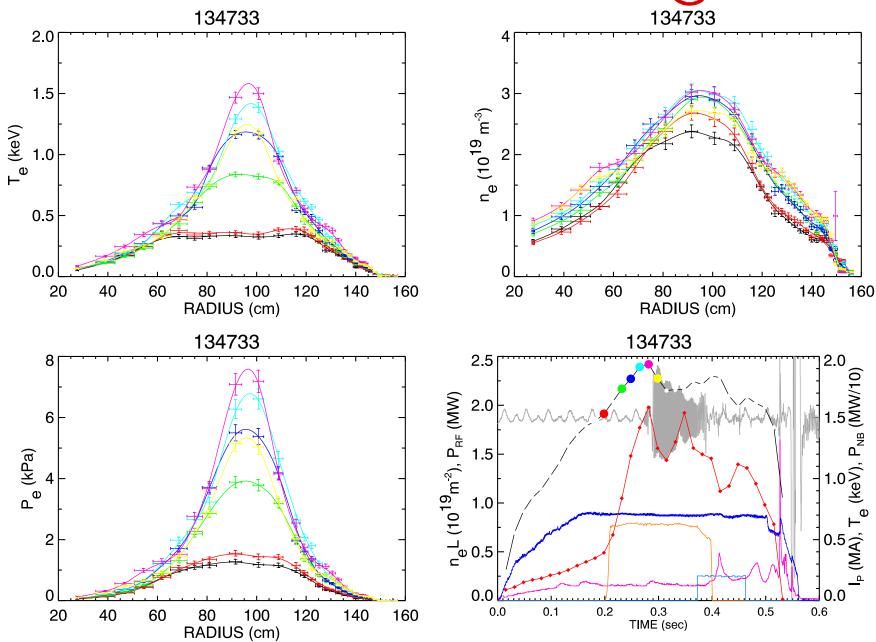
- RF waves at Bay J are core localized.
- MHD seen to redistributes wave amplitude towards edge.

Requested Machine Time: ~0.5-1 day

Experimental Plan:

- Suitable target is L-mode (D or/and He plasmas), peak density $\sim 2-3 \times 10^{13}$ cm⁻³.
- Vary $k_{_{0}}$ (wavenumber and direction) and power.
- Phasing of ±30°, ±90°, ±150°, power modulated during shot.
- Either D or He, required number of shots: $2 \times 6 = 12$ (~15 shots or 0.5 days).
- For D and He shots, ~30 shots or 1 day.

Relevance:


- Connection with FY2010 Research Milestone (R10-2).
- Provides measurements for direct comparison with codes.

Diagnostics:

FMCW and 42 GHz reflectometers, ORNL reflectometer, MPTS,
IR camera, optical SXR.

Extra

NSTX Research Forum, WPI-TSG, December 1, 2009